

PRENATAL DIAGNOSIS

Dr Valens NKUBITO GATERA

Prenatal Diagnosis

*Over the last 4 decades, the genetic basis of an increasing number of diseases is becoming understood.

At the same time, safe and effective fetal diagnostic techniques are being developed.

Prenatal Diagnosis of fetal Abnormalities

Benefits:

- 1. Malformation incompatible with life may be terminated.
- 2. Certain abnormalities may be correctible in-utero.
- 3. Provides opportunity to arrange corrective measures before hand.
- Offer a chance to be delivered at a place where the required facilities are available.
- 4. Parents decision to continue pregnancy/ mentally prepare to have a handicapped child.

Classification of Congenital Abnormalities

- 1 Chromosomal Abnormalities: Trisomy 21 (D.S) Trisomy 18 (E.S) Trisomy 13 (P.S)
- 2 Structural Abnormalities: CNS CVS GIT Bone Renal system
- 3 Genetic Disorders: Inborn error of metabolism Haemoglobinopathies

What Should We Do?

- Every pregnancy should be evaluated with the most definite test.
- Practically & economically not feasible because
 - **✓** Expensive
 - ✓ Invasive

Worldwide practice is to carry out

- -Screening procedures
- -Definite (diagnostic)tests for screening positive cases

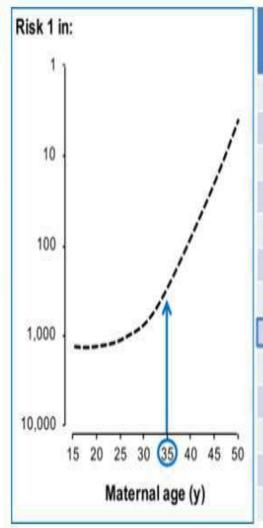
Screening Procedures

These are:

- Simple
- Cheap
- Least invasive
- Safe
- Easily repeatable

Screening Procedures --- Cont

. 1. History:


- Increasing maternal age
- Congenital anomalies in previous children
- F/Hx of Stillbirth, Recurrent 1st trimester abortion, relative marriage,...

Maternal age

Risk for trisomy 21

- Increases with maternal age.
- Decreases with gestational age because about 30% of affected fetuses die between the 12th and 40th week of pregnancy.

For example, in a woman who is 35 years old the risk for trisomy 21 at the 12th week of pregnancy is 1 in 250, but the chance that she will deliver an affected baby at 40 weeks is 1 in 350.

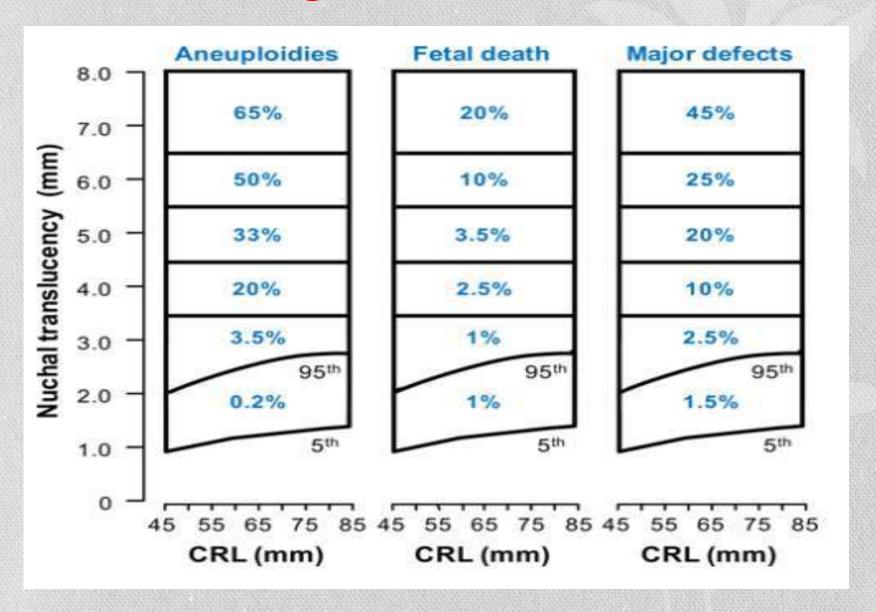
Age (y)	Gestational age			
	12 w	20 w	40 w	
20	1100	1300	1500	
25	1000	1100	1400	
30	650	750	900	
31	550	650	800	
32	450	550	650	
33	400	450	550	
34	300	400	450	
35	250	300	350	
36	200	250	300	
37	150	185	220	
38	120	140	160	
39	90	110	130	
40	70	80	100	

Screening Procedures ---Cont

- 2. Features of current pregnancy:
- Drug intake(antiepileptics e.g. warfarin, alcohol, smoking)
- Radiation exposure
- * Maternal diseases e.g.DM, cardiac, renal
- Uterine fundas large/ small for date
- Decrease fetal movements
- Fetal malpresentation
- Viral infection in early pregnancy

Screening Procedures --- Cont.

- 3. Ultrasonography:
- Screening tool in all trimesters
- At 10-14 weeks if fetal nuchal translucency > 2.5 mm-chromosomal anomalies association
- At 18-20 weeks 75% fetal abnormalities can be diagnosed


Screening Procedures --- Cont.

An ultrasound scan at 11-13 weeks:

- to measure the collection of fluid behind the fetal neck (nuchal translucency)
- to examine the fetal nose and palate
- to measure the fetal heart rate
- to assess the flow of blood across the tricuspid valve of the fetal heart and the ductus venosus

Detection of major chromosomal abnormalities of 95%

Why measuring NT?

Why fetal heart rate?

Euploid and trisomic fetuses

- In euploid fetuses the heart rate increases from about 110 bpm at 5 weeks of gestation to 170 bpm at 10 weeks and then gradually decreases to 150 bpm by 14 weeks.
- In trisomy 21 the FHR is mildly increased and is above the 95th centile in about 15% of cases.
- In trisomy 18 the FHR is mildly decreased and is below the 5th centile in about 15% of cases.
- In trisomy 13 the FHR is substantially increased and is above the 95th centile in 85% of cases.

4. Serum biochemistry

- Trisomic pregnancies are associated with altered maternal serum concentrations of various fetoplacental products.
- Screening in the second trimester by maternal age and various combinations of total or free ß-hCG, AFP, uE3 and Inhibin A can identify 56-71% of trisomy 21 pregnancies for a false positive rate of 5%.
- Screening in the first trimester between 11-14 weeks by a combination of maternal age, fetal NT, FHR and serum free \(\mathcal{B}\)-hCG and PAPP-A identifies about 90% of trisomy 21 pregnancies for a false positive rate of 3%

Serum biochemistry

Screening for other aneuploides

In euploid pregnancies the average free ß-hCG is 1.0 MoM and PAPP-A is 1.0 MoM.

In aneuploid pregnancies the average MoM values of free ß-hCG and PAPP-A are:

	free ß-hCG	PAPP-A
Trisomy 21	2.0	0.5
Trisomy 18	0.2	0.2
Trisomy 13	0.3	0.3
Turner	1.2	0.5
Triploidy		
» Digynic	0.2	0.1
» Diandric	9.0	0.7
Trisomy 18 Trisomy 13 Turner Triploidy » Digynic	0.2 0.3 1.2	0.2 0.3 0.5

Screening Procedures --- Cont.

Other benefits of the 11–13 weeks scan include:

- Accurate dating of the pregnancy
- Early diagnosis of many major fetal abnormalities
- The detection of multiple pregnancies with reliable diagnosis of chorionicity, which is the main determinant of the outcome in multiple pregnancies
- Another recent development is that the 11-13 weeks scan can be used to identify women at increased risk for the development of preeclampsia in pregnancy.

Screening Procedures --- Cont.

These are some of the structural abnormalities which can be detected by the first trimester ultrasound:

CNS: Acrania/exencephaly, Alobar holoprosencephaly, Encephalocele, Spina bifida, Sacral agenesis

Face: Facial clefts, micrognatia

Thorax: Diaphragmatic hernia

Cardiac: TOF/TA, AoCo/HLH, Right aortic arch, Atrioventricular septal

defect, Right atrial isomerism, Double-outlet right ventricle.

Abdominal wall/GI defect: Exomphalos, Gastrischisis, Body stalk anomaly

GU: Megacystis,

Skeletal: Skeletal dysplasia, Aplasia/hypoplasia of the radius/ulna (club

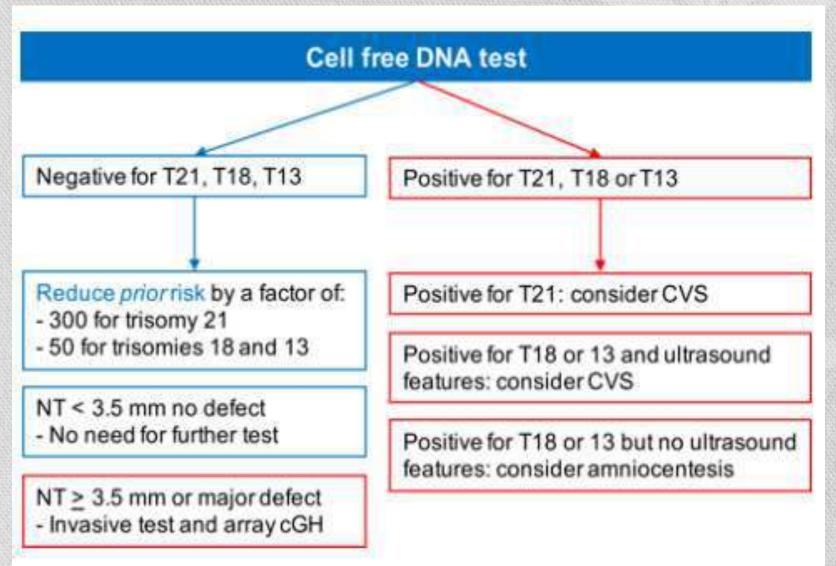
hand), Limb reduction defects.

Many of these abnormalities can be associated.

1st Trimester Ultrasound • NT Ultrasound

Combined test or Double Test

- Pregnancy associated plasma proteins-A (PAPP-A) level and serum free Beta-hCG during 1st trimester(11-14 weeks)
- Measurement of NT
- Maternal age
- And other biomarkers


High risk-----CVS or Amnio
Low risk------Ftal assessment at 20 weeks

Cell free DNA/ NIPT

- Analysis of cfDNA in maternal blood
- •detect about 99% of fetuses with trisomy 21 and 98% of fetuses with trisomies 18 or 13.
- •false positive rate (FPR) of 0.1-0.2%

Method of screening	Proportion of total population	Proportion of all cases of T21
Maternal age	5% / 20%	30% / 50%
Second trimester serum biochemistry	5%	50-70%
Age, NT, FHR, ß-hCG, PAPP-A (combined)	3-5%	90%
Combined plus additional ultrasound markers	2.5%	95%
Cell free DNA in maternal blood	<0.1%	>99%

Limitations(cfDNA)

Limitations(cfDNA)

- Failure to obtain result in 1-5% of singleton pregnancies
- Repeat testing provides a result in 60-70% of cases
- Main reason for failure is low fetal fraction (low proportion of fetal to total cfDNA in maternal blood).
 - **≻**Obesity
 - Low placental mass
- In trisomies 18 and 13, but not in trisomy 21, the fetal fraction is lower.
- Cost (200-1000 USD)

DIAGNOSTIC TESTS

- For high risk women on basis of screening tests
- An ideal test should be:
- > Least invasive
- Diagnose c. abnormality in early pregnancy.
- Minimally interfering developing pregnancy
- Diagnostic tests are also not risk free.

Counseling

Organize an appointment Couple should be present Explain:

- Risk of occurance of c. abnormality
- > All tests available, their procedure, cost, diagnostic ability and benefits, possible risks
- > Possible management plan
- ➤ If termination of pregnancy is unacceptable diagnostic tests would be fruitless.

NON INVASIVE TESTS

Ultrasonography:

- Diagnostic USG is different from screening USG,
- It takes longer time
- Dx. Wide range of c. anomalies
- Non invasive and diagnosis at spot possible
- Requires special training
- Colour doppler further enhance the capability especially for cardiac malformations and renal agenesis.

INVASIVE TESTS

AMNIOCENTESIS:

- Aspiration of amniotic fluid which contain fetal cells
- Fluid can be used for estimation of bilirubin level (for fetal haemolytic disease), AFP, Acetyl cholinesterase
- Cells used for karyotyping (Chromosomal dis.) and array CGH
- Fetal cells cultured for 3 weeks for karyotyping.
- New technique like PCR, FISH give result in 48 h.

AMNIOCENTESIS---Cont.

Procedure:

- Preliminary USG to confirm the gestation age, placental site, adequacy of liqour
- Sterilize the abdomen
- 22 G spinal needle is used.
- About 20 cc amniotic fluid is withdrawn.
- Give Anti- D to all Rh-ve mothers.
- Ask rest for 30 min.& restrict movements for 48h

AMNIOCENTESIS---Cont.

- Limitations (difficulties) of procedure:
- > Anteriorly placed placenta
- > Multiple pregnancy.
- Maternal obesity
- Oligohydramnios
- Risks:
- Pregnancy loss 1 %, Bleeding, Infection, ROM, PTL/IUD, Leaking of Amniotic fluid, Increase risk of RDS in newborn.

CHORIONIC VILLUS SAMPLING

- Collection of fragments of placental tissue (chorionic villi)- cells are examined for Dx. of C.Anomalies.
- Cytotrophoblastic (rapidly dividing) cells are used for direct karyotyping, result available within 24-48 h.
- Chorionic villi are best source of DNA
- CVS can be performed at 10 weeks gestation.

CVS

Indications:

- 1-DNA analysis for SCD, thallasemias, CF, hemophillias
- 2-Chromosomal abnormalities
- 3-Inborn error of metabolism

CHORIONIC VILLUS SAMPLING

- Procedure:
- Transabdominal approach preferred under USG guidance in supine position
- Transcervical approach is easy.
- In lithotomy position, sterilize area & Aspiration catheter and biopsy forceps.
- Introduce through Cx. under USG into placental tissue avoiding membrane rupture

• Risks:

- Pregnancy loss 2% or less
- > Before 10 weeks- associated with limb deformities, micrognathia, microglossia

FETAL BLOOD SAMPLING (FBS)

- Fetal blood
- Lymphocytes are rapidly cultured, results within 48-72 hours.

Indications:

- 1. Prenatal Dx. DNA available for Cytogenetic studies In failed amniocentesis, and mosaicism in chorion or amniotic fluid.
- 2. Fetal assessment: for red cell alloimmunization, (Hb;Hc,TrF) Hydrops fetalis, viral infection, platelets alloimmunization
- Unfortunately Associated with highest rate of fetal loss.
- Currently used for blood transfusion in utero in fetal anemia.

FETAL BLOOD SAMPLING (FBS)

- •Procedure : (cordocentesis):
- The sites for FBS are placental insertion of umbilical cord, abdominal insertion of cord, intrahepatic fetal vein and fetal heart.
- Suitable time is 20-28 weeks •

Risks:

- Bleeding from site of puncture
- Cord haematoma
- Fetal bradycardia
- Fetal death

EMBRYOSCOPY & FETOSCOPY

- Direct visualization of embryo and fetus.
- Limited field of vision.
- Provide information only about external fetal structures.

NEW MOLECULAR ANALYTIC TECHNIQUES

- Fetal cell obtained by CVS and Amniocentesis can be used for prenatal Dx. For congenital anomalies by following new techniques
- 1- Southern blotting
- 2- PCR
- 3-FISH
- 4- Array CGH

Polymerase chain reaction (PCR)

- Amplify specific DNA and RNA fragments
- Once nucleotide sequence of a region of DNA strand is known, complimentary oligonucleotides & polymerase are added to single strand DNA
- Repeat process 30 times to get adequate DNA
- PCR identify specific DNA sequence for gene mutation & prenatal Dx. at an earlier stage before an embryo transfer in IVF cycle.

FLOURESCENT IN SITU HYBRIDIZATION

- FISH allows detection & localization of specific DNA sequence in interphase or metaphase.
- Advantage results available in 24-48 h.
- Disadvantage fail to detect big structural rearrangements
- Identify 80% clinically relevant abnormalities, helpful for early decision about further management of affected pregnancies.

MANAGEMENT OF FETAL C. ANOMALIES

- It is a tedious task, requires skillful, sympathetic & professional approach.
- Management options:
- Termination of pregnancy
- In utero management if possible
- Conservative management
- Involvement of pediatricians is very crucial
- Need to involve surgeons, geneticists, psychologists,

Multidisciplinary team is needed!!!

POSTPARTUM MANAGEMENT OF C.A.

- For better understanding of congenital anomalies and its impact on future reproductive performance of couple, following procedures should be carried out on affected babies/ abortuses whenever possible after consent:
- 1. Physical examination / postmortem
- 2.Fetal tissue(blood, skin, placenta) for genetic analysis
- 3. Placenta and membrane for histopathology
- 4.Placental & baby swab for microbiology & virology.
- 5.Baby gram (x-rays of whole baby)
- 6.Baby photograph

Take home message

- Fetal abnormalities are frequent;
- First trimester scan and screening for chromosomal abnormalities between 11 and 14 weeks should be our standard practice;
- Combined test can be performed in our settings and can detect more 95% of major abnormalities in the first trimester and quadruple test in the second trimester to detect around 60%;

Take home message

- NIPT/ cfDNA is a screening tool with more accuracy the the combined but its still expensive;
- A 20 weeks scan is important for fetal anatomical assessment;
- Only perform a diagnostic invasive test if screening tests are positive
- Counseling of the couple with expalining risks and benefits
- No need to carry out a diagnostic test if termination is not an option

In case of fetal abnormalities, a multidisciplinary team is need for assessment and management.

THANKS