10/3/2018

RWANDA MILITARY HOSPITAL

APPROACH TO DKA

Aicha Uwamahoro, MD, Mmed Peds(UR)

OUTLINE

<u>Part 1</u>

Case

<u>Part 2</u>

- introduction to T1 DM,
- Epidemiology
- DKA & Physiopathology

Part 3

- Clinical presentation of DKA
- Management
- Monitoring
- complications of management
- recommendations

Part I: Case

- 15 months old F, presents to a random clinic with oral thrush. As she is unable to feed well, she is admitted for intravenous fluids. Elsewhere NAD
- Hx of polydipsia noted one week ago
- DOA 2, glycemia of 300mg/dl not taken seriously
- DOA 4 found drowsy GCS:13/15, dehydrated with RD plus fruity smell...

Case cont'd

- Glycaemia was in 400mg/dl
- PH:6,89 HCO3: 2,8
- Urine ketone +++

Part II: Introduction to T1DM

- Type 1 DM is due to lack of insulin: autoimmune destruction of Beta cells in the pancreas
- Insulin deficiency causes hyperglycemia hence ketone production from lipid catabolism
- Mgt is insulin
- Genetic susceptibility

EPIDEMIOLOGY

- Worldwide variation, highest in Finland(37-65/100,000), lowest in china, Venezuela (0.1-1,9/100,000)
- 45% present <10 years
- incidence of childhood T1DM is reported to be rising worldwide, increases of 2-5%per yr in Europe, the Middle East, and Australia.
- Incidence studies in lower-income countries in Africa and other regions may underestimate true incidence as new cases are frequently missed and die undiagnosed.
- Rwanda, the number of newly diagnosed children per year(1000s):0.05; number of children with T1DM (1000s): 0.3
- Chris peterson et al. diabetes in the young-a global view and worldwide estimates f numbers of children with type 1 biabetes. Diabetes research and clinical practice10392014) 161-175

DKA

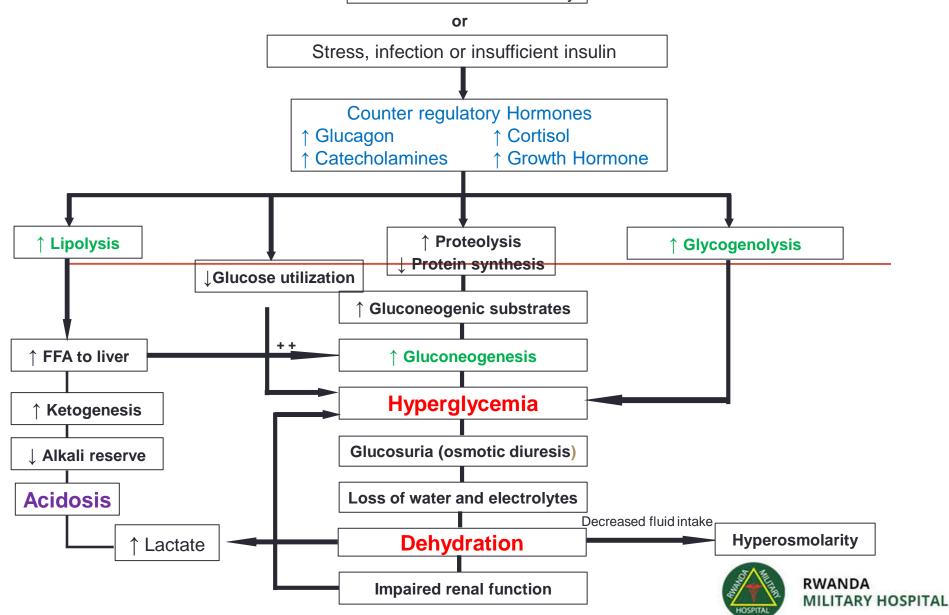
Definition

- Hyperglycemia: plasma glucose >200 mg/dL
- Metabolic acidosis: PH <7.30 or bicarbonate <15 mmol/L
- ketosis (ketonuria or ketonemia)

	DKA severity		
	Mild	Moderate	Severe
pH _{venous}	7.3-7.2	7.1-7.20	<7.10
Serum HCO ₃ mmol/L	10-15	5-10	<5

Wolfsdorf J. Diabetes Care 2006; 29:1150

DKA


- Leading cause of mortality and morbidity of T1DM
- Occurs at 1st Dg of T1DM in about 1/3 in the US
- 15-85% newly diagnosed infants and children present with DKA depending on regional incidence
- In established T1DM, rate of DKA is 6-8%/yr

10/3/2018

PATHOPHYSIOLOGY OF DIABETIC KETOACIDOSIS

Absolute insulin deficiency

Part III: Clinical presentation

- Polyuria; polydipsia less obvious in infants
- fatigue;
- signs of dehydration (underestimated due to increased serum osmolality, then fluid shifts from intracellular to extracellular
- Nausea, vomiting, abdominal pain (can mimic acute abd?)
- Rapid, deep (Kussmaul) respiration
- Decreasing LOC related to severity acidosis
- weight loss, nocturia,...
- Occasionally diaper candidiasis

Management

Initial evaluation:

- Vital signs
- Signs of shock
- Level of dehydration, calculate fluid deficit (5-10%)
- weight
- Level of consciousness

Lab investigations:

- blood glucose.
- Venous pH and serum HCO3
- Ketosis (ketonemia, ketonuria)
- Electrolytes (Na, K, Cl)
- Urea, creatinine.
- pCO2
- FBC
- Ca, phos, Mg
- Calculate anion gap
- Severity of DKA

Management goals

- Treatment of dehydration
- Insulin
 - Correct acidosis and reverse ketosis
 - Restore glucose to near normal
- Treatment of precipitating cause
- Close monitoring
- Avoid complications of therapy
 - >Cerebral edema
 - >Hypokalemia

Fluid & Electrolyte Therapy

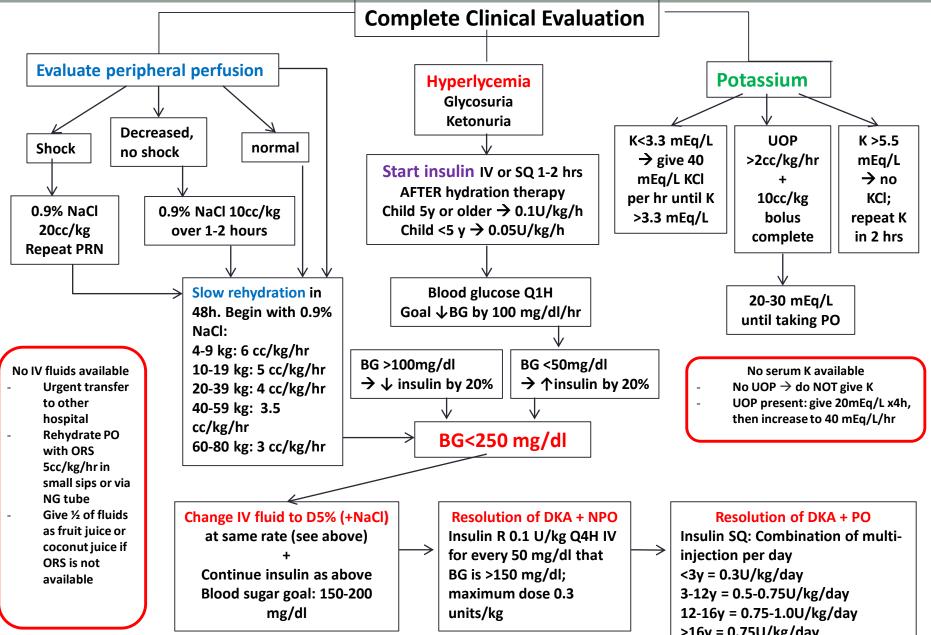
- During <u>1st HOUR</u>: Resuscitate in case necessary to restore perfusion if impaired
- 10-20 mL/kg of NaCl 0.9% over 1-2 hours
- Dehydration should be corrected slowly to avoid cerebral edema
- Deficit to be corrected over 48h to be added on daily requirement : usually rate is 1.5-2x daily maintenance
- Provide maintenance fluid and electrolytes

Fluid & Electrolyte Therapy

- For at least 4-6 hours: 0.9% NaCl + K⁺
- Then later ½ NaCl+ K⁺
- Add 5% dextrose when glycaemia 250 mg/dL
- Adjust dextrose concentration (5%-12.5%) according to glycaemia to avoid hypoglycemia if BG< 150mg/dl before ketoacidosis resolves
- Continue IV fluid therapy until acidosis has been corrected (pH: ≥7.30 or HCO3: ≥ 15; anion gap nearnormal) and patient is able to eat and drink

Insulin treatment

- Start continuous IV insulin infusion. Dose is 0.05-0.1 unit/kg/hour of Regular insulin.
- Start with the lowest effective insulin dose
- If no syringe pump available, give 0.05-0.1 unit/kg IV every hour or 0.1 unit/kg SC 2 hourly
- Check glycaemia hourly
- Once glucose is below 250 mg/dl (14 mmol/L), change IV fluid to D5%1/2NS with 20meq of KCl/L



Potassium treatment

- if hyperkalemia or impaired real function: none until levels fall to normal and adequate kidney function.
- normokalemic and voiding, initiate K replacement with the start of insulin therapy at the concentration of 40mEq/L (40 mmol/L).
- If hypokalemic, K replacement to be started immediately. Insuline should be delayed until serum K has been restored to a near normal concentration.
- Potassium replacement therapy should continue as long as IV insulin and fluid therapy is still running.

10/3/2018

>16y = 0.75U/kg/day

Monitoring

Parameter	Trequency
Vital signs	Hourly
Fluid balance (In/Out)	Hourly
Level of consciousness (neuro status)	Hourly
Blood glucose	Hourly
U&Es, venous blood gaz	2-4h
ketosis	2-4h

Discontinuing the insulin infusion

The insulin infusion should continue until all of the following conditions are met:

- Venous pH >7.30, <u>or</u> serum bicarbonate (HCO₃) >15 mEq/L
- Blood glucose <200 mg/dL (11.1 mmol/L)
- Serum anion gap reduced to normal (12 ± 2 mEq/L) or serum BOHB ≤1 mmol/L (10.4 mg/dL)
- Patient is tolerating oral intake

Discontinuing the insulin infusion

- There might be mild hyperchloremic acidosis and/or ketonuria for some time after the above conditions are met.
- So Hyperchloremic acidosis with a normal anion gap is not a contraindication for switching the patient to subcutaneous insulin.
- SC insulin to be initiated at least 30 min before stopping continuous insulin

Complication of mgt

- Cerebral edema
- insufficient rehydration
- Hypoglycemia
- Hypokalemia
- Hyperchloremic acidosis

Cerebral edema

Risk factors:

Severe acidosis at presentation.

Substantially elevated BUN at presentation.

Severe hypocapnia.

Young child (<5 years) and/or new onset of diabetes

Cerebral edema

Diagnosis

Minor criteria (moderately suspicious findings)

Headache – Although headache is frequently present at diagnosis, worsening or recurrence of headache during treatment is suspicious for cerebral injury.

Vomiting – Vomiting is suspicious if it develops or recurs during treatment.

Irritability, lethargy, or not easily aroused from sleep – These features are suspicious particularly if they occur or worsen after initiation of therapy.

Elevated blood pressure (eg, diastolic BP >90 mmHg).

Major criteria (very suspicious findings)

Abnormal or deteriorating mental status after initiation of therapy, agitated behavior, or fluctuating level of consciousness.

Incontinence inappropriate for age.

Inappropriate slowing of heart rate – eg, decline more than 20 beats per minute that is not attributable to improved intravascular volume or sleep state.

Diagnostic criteria (signs of significant brain injury, increased intracranial pressure, or brain herniation)

Muir AB. Cerebral edema in childhood diabetic ketoacidosis. Diabetes Care 2004; 27:1541.

RWANDA MILITARY HOSPITAL

Cerebral edema: mgt

Indications:

•Child with DKA and One diagnostic criterion, or

•Two major criteria, or

•One major and two minor criteria, or

•One major and one minor criterion (if child under 5 years of age)

The decision to treat should be based on signs and symptoms. Do not rely on neuroimaging to make or exclude the diagnosis.

Interventions:

- Give mannitol, 0.5 to 1 g/kg intravenously over 15 minutes. The mannitol dose may be repeated in 30 minutes, if there is no initial response.^Δ
- Adjust fluid administration as indicated to maintain normal blood pressure and optimize cerebral perfusion.
- Avoid hypotension that might compromise cerebral perfusion pressure.
- Neurosurgery consultation regarding further management, including possible invasive monitoring of intracranial pressure in selected cases.

Recommendations

- Full assessment of patient (Hx, P/E..) and... to repeat if something is not correlating with current working Dg
- Remember to take glycaemia and interpret patient investigation results !!!
- Use of protocol in mgt of DKA

References

- Silink M. Childhood diabetes: a global perspective. Horm Res 2002; 57 Suppl 1:1.
- <u>Karvonen M, Viik-Kajander M, Moltchanova E, et al. Incidence of childhood type 1 diabetes worldwide. Diabetes</u> <u>Mondiale (DiaMond) Project Group. Diabetes Care 2000; 23:1516.</u>
- Weng J, Zhou Z, Guo L, et al. Incidence of type 1 diabetes in China, 2010-13: population based study. BMJ 2018; 360:j5295.
- Harjutsalo V, Sund R, Knip M, Groop PH. Incidence of type 1 diabetes in Finland. JAMA 2013; 310:427.
- Plotnick LP, Klingensmith GJ, Silverstein JH, et al. Diabetes mellitus. In: Principles and Practice of Pediatric Endocrinology, Kappy MS, Allen DB, Geffner ME (Eds), Charles C Thomas, Springfield 2005. p.635.
- Writing Group for the SEARCH for Diabetes in Youth Study Group, Dabelea D, Bell RA, et al. Incidence of diabetes in youth in the United States. JAMA 2007; 297:2716.
- Wolfsdorf J, Glaser N, Sperling MA, American Diabetes Association. Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes Association. Diabetes Care 2006; 29:1150.
- Klingensmith GJ, Tamborlane WV, Wood J, et al. Diabetic ketoacidosis at diabetes onset: still an all too common threat in youth. J Pediatr 2013; 162:330.
- Dabelea D, Rewers A, Stafford JM, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics 2014; 133:e938.
- Lévy-Marchal C, Patterson CC, Green A, EURODIAB ACE Study Group. Europe and Diabetes. Geographical variation of presentation at diagnosis of type I diabetes in children: the EURODIAB study. European and Dibetes. Diabetologia 2001; 44 Suppl 3:B75.
- Usher-Smith JA, Thompson M, Ercole A, Walter FM. Variation between countries in the frequency of diabetic ketoacidosis at first presentation of type 1 diabetes in children: a systematic review. Diabetologia 2012; 55:2878.
- Wolfsdorf JI, Glaser N, Agus M, et al. Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State: A Consensus Statement from the International Society for Pediatric and Adolescent Diabetes. Pediatr Diabetes 2018.

References

- <u>Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric</u> diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr 2014; 168:999.
- Puttha R, Cooke D, Subbarayan A, et al. Low dose (0.05 units/kg/h) is comparable with standard dose (0.1 units/kg/h) intravenous insulin infusion for the initial treatment of diabetic ketoacidosis in children with type 1 diabetes-an observational study. Pediatr Diabetes 2010; 11:12.
- Muir AB, Quisling RG, Yang MCK, Rosenbloom AL. Cerebral edema in childhood diabetic ketoacidosis. Diabetes Care 2004; 27:1541.
- Chris Peterson et al. diabetes in the young-a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes research and clinical practice10392014) 161-175.

Thank youComments???

