



## Management of thyroid nodules and well-differentiated thyroid cancer

Peter J Mazzaglia Associate Professor of Surgery Warren Alpert School of Medicine Brown University Rhode Island Hospital

## Outline

- Epidemiology
- Discussion of 2015 ATA guidelines
- Role of ultrasound
- Role of cytology
- Management of non-diagnostic fna
- Long term management of benign nodules
- Management of indeterminate cytology
- Management of malignant cytology

#### Epidemiology of Nodular Thyroid Disease

- Prevalence of nodular thyroid disease
  - Palpable
    - 5% of population
  - Non-palpable
    - 50%
    - Increasingly detected as thyroid incidentalomas
      - Ultrasound
      - CT
      - MRI

## Epidemiology of Thyroid Cancer

- Prevalence of cancer in non-palpable nodules < 1cm is similar to that in palpable nodules: 5--8%
- 63,000 new cases of thyroid ca in 2014, compared to 37,000 in 2009
- Incidence 14.3/100K compared to 4.9 in 1975
  - All PTC
  - ~ 40% of new diagnoses are < 1 cm
  - Expected to become 3<sup>rd</sup> most common cancer in women
- 1500 deaths due to thyroid ca/yr

## 2015 ATA Thyroid Nodule Guideline Aims

 Minimize potential harm from overtreatment in a majority of patients at low risk for disease-specific mortality and morbidity,

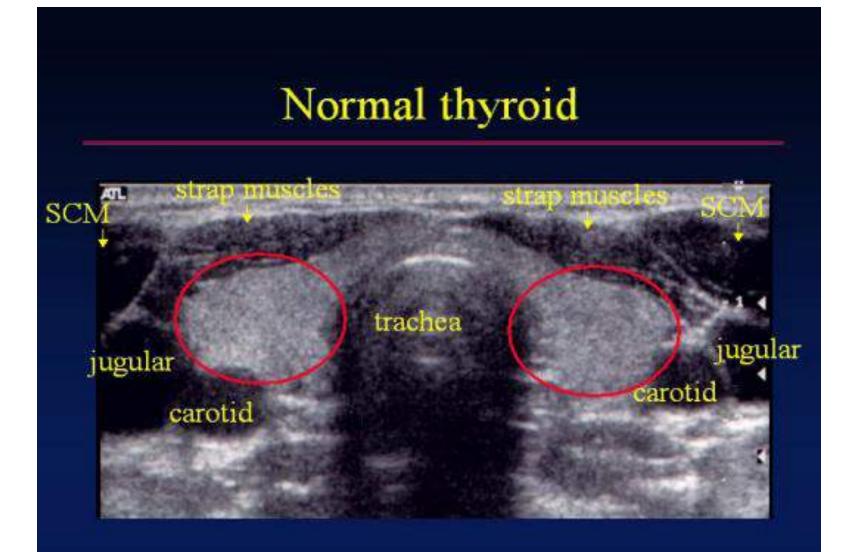
 while appropriately treating and monitoring those patients at higher risk.

## Overriding principle

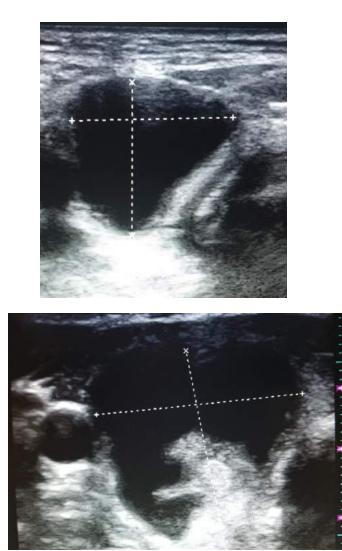
- Most nodules are low risk, and many thyroid cancers pose minimal risk to human health and can be effectively treated
- Only nodules > 1 cm should be biopsied unless there are significant risk factors, lymphadenopathy, or suspicious ultrasound features
- Biopsying subcentimeter nodules has the potential for leading to more harm than good

## # 22: Importance of TSH

- Mandatory for ruling out hyperfunctioning nodules
- A suppressed TSH should lead to radioiodine uptake scan
- Patients with normal or elevated TSH do not benefit from scanning
- Hyperfunctioning nodules should not be biopsied


Ultrasound should be obtained in all patients with thyroid nodules.

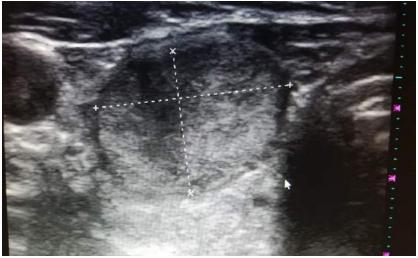
- Ultrasound as an Extension of the Physical Exam
- 15% of "palpable nodules" are without abnormality on US eval\*
- 45% of patients have additional nodules


Brander et al. J Clin Ultrasound 1992; Marqusee et al. Ann Int. Med. 2000.

## Ultrasound Characteristics of Thyroid Nodules

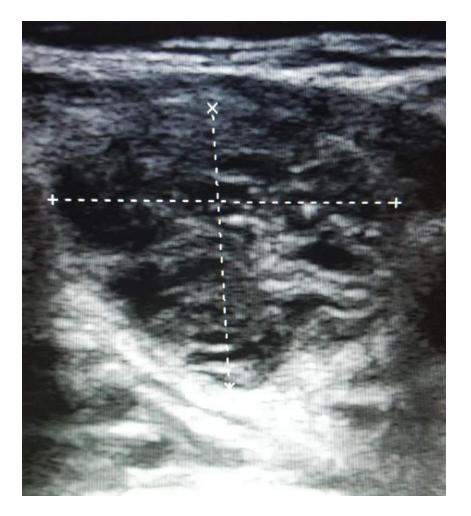
- Size
- Echogenicity
- Cystic vs. Complex
- Border: Regular vs. Irregular
- Calcification (micro vs. macro)
- Vascularity
- Shape
- Elastography
  - has not proven to be reliable predictor of malignancy




## Cystic nodules



- Smooth borders
- Fluid is anechoic
- ? Solid component versus sludge/sediment
  - Check vascularity
- Simple cysts do not require biopsy


## Intermediate and low suspicion nodules





- Isoechoic or hyperechoic
- Smooth borders
- No calcifications
- Halo
- Cystic areas

## Spongiform nodule

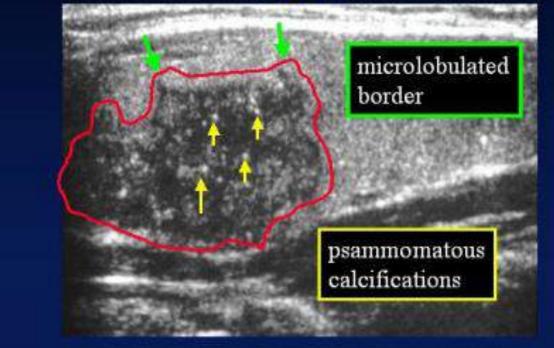


- Thought to be benign
- ATA guidelines suggest avoiding biopsy unless over 2 cm

## Highly suspicious nodules



- Hypoechoic nodule
- Irregular border
- Shape: taller than wide
- Calcification

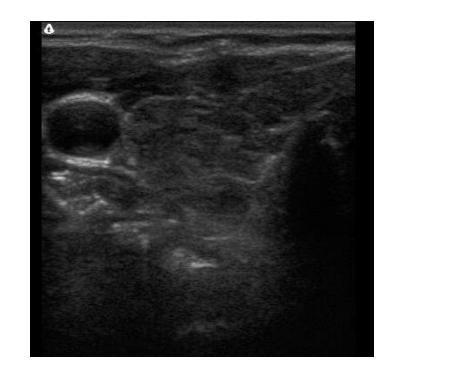

### **Classic microcalcifications**





### Infiltrating margins

#### Sagittal




### Malignant nodules





### Hashimoto's glands in cross section





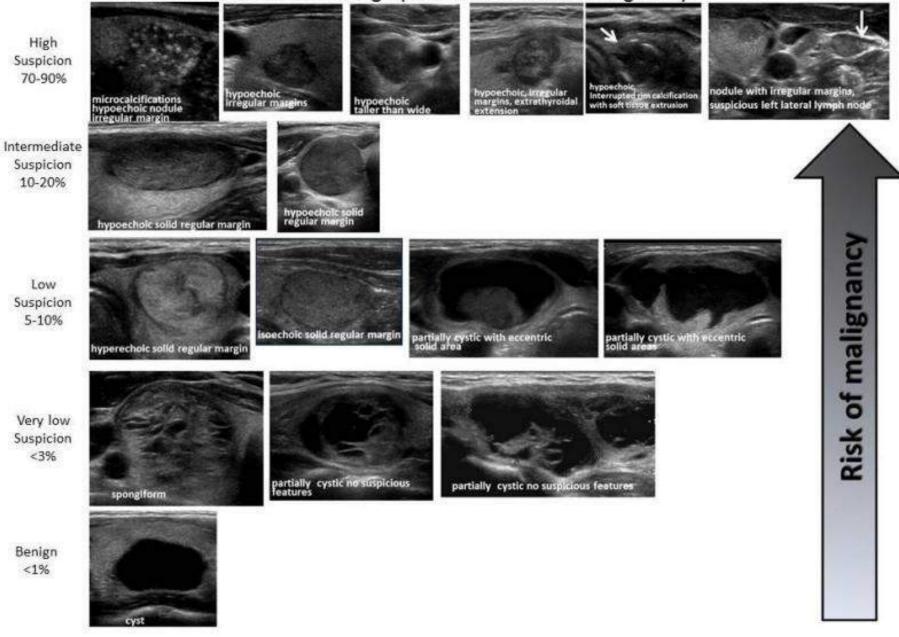
Appear very hypoechoic and heterogeneous. Can be confused for thyroid nodules

#### To Biopsy or Not to Biopsy Can Ultrasound Improve the Odds?

#### Significance of Ultrasound Features for Distinguishing Benign from Malignant Nodules

|                        | Malignant | Benign | P value | RR   | Sens<br>(%) | Spec<br>(%) | PPV*<br>(%) |
|------------------------|-----------|--------|---------|------|-------------|-------------|-------------|
| Solid<br>hypoechoic    | 87%       | 56%    | .009    | ns   | 87          | 43          |             |
| Irregular              | 77%       | 14%    | .0001   | 16.8 | 77          | 85          | 39          |
| Hyper<br>vascularity   | 74%       | 19%    | .0001   | 14.3 | 74          | 81          | 26          |
| Micro<br>calcification | 29%       | 4%     | .0001   | 4.9  | 29          | 95          | 36          |

Papini et al. Risk of Malignancy in Nonpalpable Thyroid Nodules: Predictive Value of Ultrasound and Color-Doppler Features. JCEM 87:1941-1946, 2002.


\* Combined with hypoechogenicity

## 2015 American Thyroid Association Predictors of malignancy:

- Microcalcifications, irregular borders, taller than wide.
- Hypervascularity NOT correlated with malignancy
- Follicular thyroid cancer and follicular variant of papillary thyroid cancer (NIFTP) were less likely to exhibit suspicious ultrasound features
  - More likely to be hyper or isoechoic, round, noncalcified, with smooth margins

| Sonographic<br>pattern | US features                                                                                                                                                                       | Risk of<br>malignancy | Consider bx FNA<br>size cutoff |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| High suspicion         | Solid, hypoechoic with 1<br>or more: irregular margins,<br>microcalc, taller than<br>wide, rim calc with small<br>extrusive soft tissue<br>component, extrathyroidal<br>extension | > 70—90%              | > 1 cm                         |
| Intermediate           | Hypoechoic, smooth<br>margins w/o microcalc,<br>extrathyroidal ext or taller<br>than wide                                                                                         | 10—20%                | > 1 cm                         |
| Low                    | Iso or hyperechoic w/o<br>susp features                                                                                                                                           | 5—10%                 | > 1.5 cm                       |
| Very low               | Spongiform w/o                                                                                                                                                                    | < 3%                  | > 2 cm or observe              |
| Benign                 | Purely cystic                                                                                                                                                                     | < 1%                  | No biopsy                      |

#### ATA Nodule Sonographic Pattern Risk of Malignancy



## 2015 American Thyroid Association guidelines for who to biopsy

- > 1 cm with intermediate or high suspicion on US
- > 1.5 cm with low suspicion US
- > 2 cm with very low suspicion US
- Do not biopsy purely cystic nodules

## Approach to multinodular goiter

- Assess each nodule individually, using same criteria as for solitary nodules
- Use sonographic pattern to assign preference
- If all nodules have low suspicion pattern and there is no normal thyroid parenchyma, it is reasonable to aspirate only largest nodules > 2 cm or continue surveillance with US

## Subcentimeter nodules

- Reasonable to observe even if highly suspicious
- Study of 1235 Japanese patients observed with biopsy proven PTC
  - No distant mets or deaths
  - Tumor growth in 5.9% of pts < 40, 2.2% if > 60
  - Lymph node mets in 5.3% vs 0.4%

Ito Y et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 24:27-34 2014

## Fine Needle Aspiration: Logistics

- Office based
- Reliant on Expert Cytopathology
- Reliant on Sample Adequacy
- Potential Results: Benign, Malignant, Indeterminate/suspicious, Non-diagnostic

## Cytology

- Recommend uniform reporting using Bethesda system
  - 1. Non-diagnostic
  - 2. Benign
  - 3. Atypia of undetermined significance (AUS) or Follicular lesion of undetermined signifance (FLUS)
  - 4. Follicular Neoplasm
  - 5. suspicious for PTC
  - 6. PTC

Cibas et al. A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. 2013 Ann Intern Med 159:325-332

## Bethesda classification

| Diagnostic category | Risk of malignancy | Actual risk* |
|---------------------|--------------------|--------------|
| Non-diagnostic      | 1—4                | 20 (9—32)    |
| Benign              | 1—3                | 2.5 (1—10)   |
| AUS/FLUS            | 5—15               | 14 (6—48)    |
| Follicular neoplasm | 15—30              | 25 (14—34)   |
| Suspicious          | 6075               | 70 (53—97)   |
| Malignant           | 97—99              | 99 (94—100)  |

Based on meta-analysis of 8 studies of surgical resection

Bongiovanni M et al. The Bethesda System for Reporting Thyroid Cytopath: a meta-analysis. 2012 Acta Cytol 56:333-339 Cibas ES, Ali SZ 2009 The Bethesda System for reporting thyroid cytopath. Am J Clin Pathol 132:658-665

## What to with non-diagnostics

- Repeat FNA with US guidance
  - Will yield result 60—80% of the time except for cystic
  - If repeat is non-diagnostic, can observe or remove depending on US features
- Frequency of malignancy in all non-diagnostic
   FNA biopsies estimated at 2—4%

## Follow-up of benign nodules

- If a second FNA is benign, NO further US surveillance is indicated—Strong recommendation
  - Up to 50% of benign nodules will continue to slowly increase in size
  - Sonographic pattern much more important as predictor of malignancy than growth

Kwak et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. 2010 Radiology 254:292-300

Additional Recommendations for benign nodules from 2015 guidelines

• 25: no role for TSH suppression

• 26: obtain adequate iodine intake

 27: consider surgery for growing, compressive nodules, especially if > 4 cm. Follow growing nodules

# Nodules with indeterminate cytology

## Atypia of undetermined significance

- AUS/FLUS
  - Cells with architectural and/or nuclear atypia but insufficient to be placed in higher risk category
  - Expected to make up 7% of FNA results, but in actuality seen in 1—27%
  - Mean risk of malignancy 16%
- Management strategies
  - Get expert cytopath review
  - Repeat FNA (helpful in most) and/or molecular testing
    - If inconclusive, either surveillance or excise, depending on risk factors, US appearance, and pt. preference

Ohori NP et al. Variability in the AUS/FLUS dgx in the Bethesda System. 2011 Acta Cytol 55:492

## Follicular Neoplasms

- Cytologic definition: cellular aspirate comprised of follicular cells arranged in an altered architectural pattern characterized by cell crowding and/or microfollicles, lacking nuclear features of PTC
- 15—30% risk of malignancy
- #16: Gold standard: excision, but after consideration of clinical and sonographic features, molecular testing may be used to supplement malignancy risk

Factors considered when planning lobectomy versus total thyroidectomy for indeterminate nodules

- Estimated pre-surgical likelihood of ca
  - Family history or radiation hx
  - –? Size
  - Sonographic pattern
  - Cytologic category
  - Molecular test findings

Additional factors considered when planning lobectomy versus total thyroidectomy for indeterminate nodules

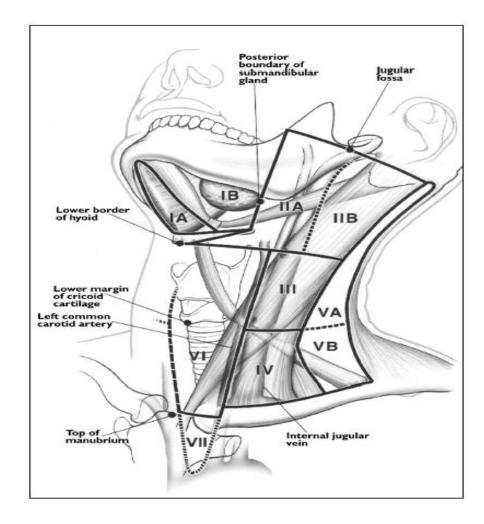
- Patient preference
- Presence of contralateral nodules
- Pre-existing hypo or hyper thyroidism
- Medical co-morbidities
- Surgical risks increased for total tx versus lobectomy
- Occupation
- Need for thyroid hormone replacement

### **IN AFRICA**

## DOES THE PATIENT HAVE THE ABILITY TO ALWAYS TAKE THYROID HORMONE REPLACEMENT?

## Surgery for indeterminate nodules

- #19: Lobectomy
  - No role for frozen section
  - May modify approach based on clinical or sonographic characteristics, patient preference and/or molecular testing
- #20: Total thyroidectomy is reasonable for suspicious cytology, presence of mutations specific for ca, sonographically suspicious, > 4 cm, or presence of risk factors for ca
  - Also for people with contralateral nodules and pts who prefer to avoid a possible second operation


## US Applications in Patients with Established Thyroid Cancer



## **Cervical LN Assessment**

- Anatomy--surgeon performed
- ~18%--25% of DTC will recur, usually in 1st 10 yrs
- Majority of recurrences in central or ipsilateral neck
- US twice as sensitive at detecting LN mets than nuclear medicine scanning

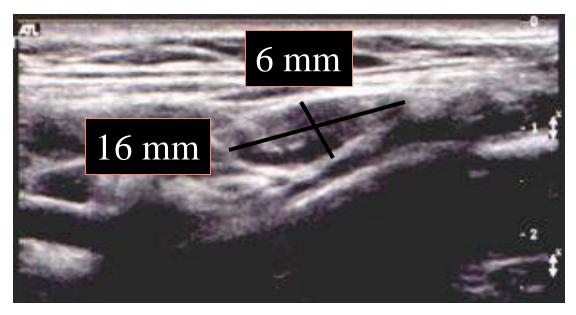
### Lymph Node Compartments



## Lymph node characteristics

| Trait                                      | Benign                        | Malignant                |  |
|--------------------------------------------|-------------------------------|--------------------------|--|
| Shape                                      | Oval                          | Round                    |  |
| Width/Length                               | < .5                          | > .5                     |  |
| Echogenicity<br>(relative to strap muscle) | Central hypo<br>(fatty hilus) | hyper                    |  |
| Vascularity                                | Hilar                         | Increased<br>subcapsular |  |

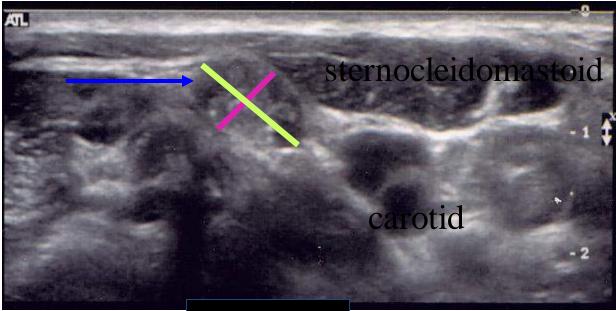
## Lymph node metastases


- Highly prevalent in PTC
  - Likely present in > 50% of cases
- Logical progression
  - Begin in Ipsilateral central compartment
  - Spread to lateral compartment and contralateral neck

# Prognostic significance of lymph node metastases

- Minimal impact on long term survival
- Remember that in the new TNM guidelines if you are under 55, maximum tumor stage is II
  - Stage I:
    - covers everything from microcarcinoma to a patient presenting with bilateral lateral compartment metastases
  - Stage II: only if distant mets are present

## Normal lymph node


#### Sagittal

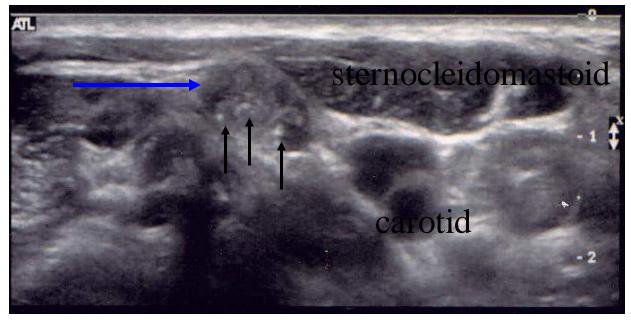




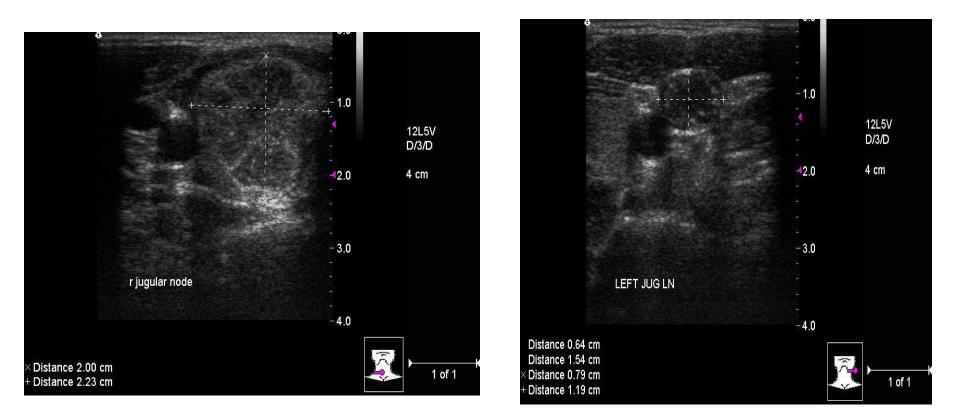
#### Malignant 9 mm right lateral cervical LN

#### hyperechoic, rounded shape,




 S
 7mm

 L
 11mm


 S:L
 0.64

#### Malignant 9 mm right lateral cervical LN

#### micro Ca<sup>2+</sup>



## Examples of lymph node mets



#### Management of patients with thyroid cancer

- Ability to detect non-palpable local-regional metastases and change surgical management
- Retrospective review of 212 patients

| Group                                      | # of pts | # with dz on<br>US, not on PE | Percent |
|--------------------------------------------|----------|-------------------------------|---------|
| Primary operation                          | 107      | 21                            | 20%     |
| Reoperation<br>for persistent<br>disease   | 28       | 9                             | 32%     |
| Reoperation<br>for recurrent<br>thyroid ca | 77       | 52                            | 68%     |
| Total                                      | 212      | 82                            | 39%     |

Kouvaraki et al. Role of preop ultrasonography in the surgical management of patients with thyroid cancer. Surgery 2003;134:946-55.

# When to use US for LN detection in thyroid cancer patients

- Medullary CA—surveillance in calcitonin + pts
- Prior to thyroidectomy for pap CA (LN+ changes extent of surgery)
- As surveillance after I-131 therapy in DTC

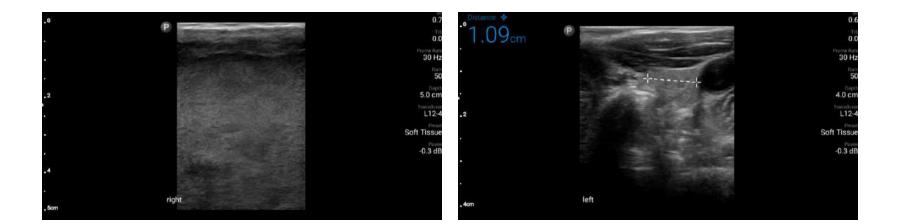
When should ultrasound be used to follow thyroid cancer patients post-operatively?

American Thyroid Association recommends pre-op and annual post-op neck ultrasound for all thyroid cancer patients.

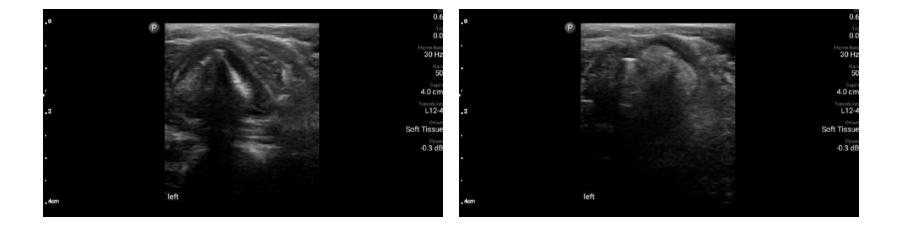
## Rwanda Military Hospital Experience

## **Cystic Nodules**

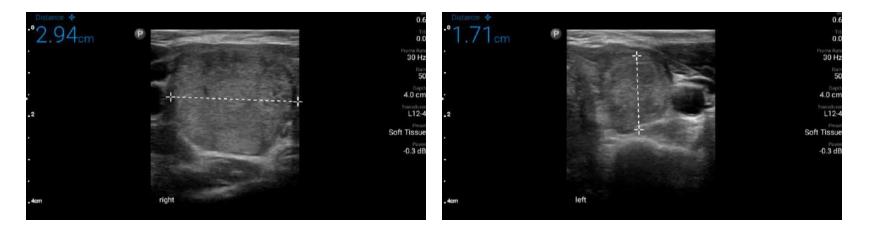



## Role for ultrasound illustrating laterality in patients with large symmetric goiters

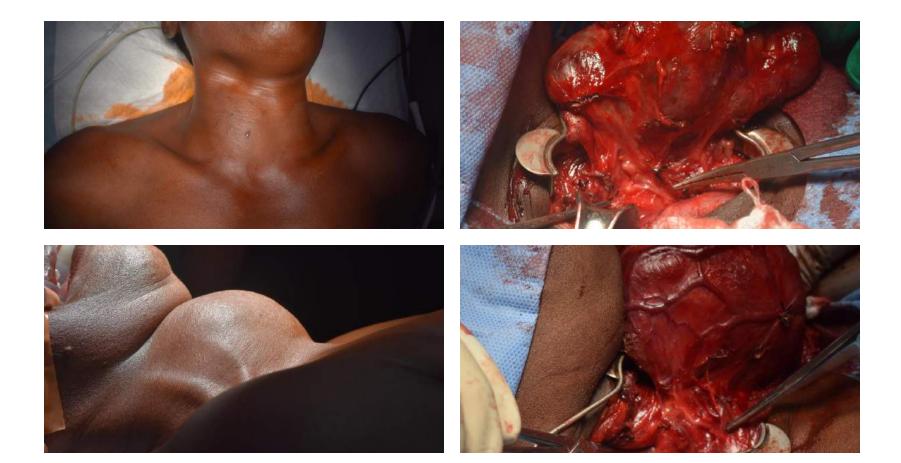
Left



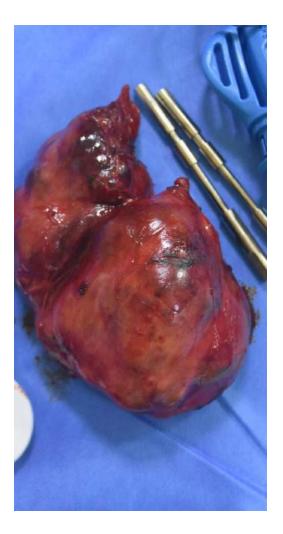

right







#### Ultrasound images of Vocal Cords




## Multinodular goiter nodules are solid and isoechoic



#### **RLN** Dissection in large goiter cases



### **Resected specimens**





#### **Post Neck Dissection US**

